Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions.

نویسندگان

  • Thomas W Hertel
  • Navin Ramankutty
  • Uris Lantz C Baldos
چکیده

There has been a resurgence of interest in the impacts of agricultural productivity on land use and the environment. At the center of this debate is the assertion that agricultural innovation is land sparing. However, numerous case studies and global empirical studies have found little evidence of higher yields being accompanied by reduced area. We find that these studies overlook two crucial factors: estimation of a true counterfactual scenario and a tendency to adopt a regional, rather than a global, perspective. This paper introduces a general framework for analyzing the impacts of regional and global innovation on long run crop output, prices, land rents, land use, and associated CO2 emissions. In so doing, it facilitates a reconciliation of the apparently conflicting views of the impacts of agricultural productivity growth on global land use and environmental quality. Our historical analysis demonstrates that the Green Revolution in Asia, Latin America, and the Middle East was unambiguously land and emissions sparing, compared with a counterfactual world without these innovations. In contrast, we find that the environmental impacts of a prospective African Green Revolution are potentially ambiguous. We trace these divergent outcomes to relative differences between the innovating region and the rest of the world in yields, emissions efficiencies, cropland supply response, and intensification potential. Globalization of agriculture raises the potential for adverse environmental consequences. However, if sustained for several decades, an African Green Revolution will eventually become land sparing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of Changes in Land Use and Land Cover on Atmospheric Chemistry and Air Quality over the 21st Century

The effects of future land use and land cover change on the chemical composition of the atmosphere and air quality are largely unknown. To investigate the potential effects associated with future changes in vegetation driven by atmospheric CO2 concentrations, climate, and anthropogenic land use over the 21 century, we performed a series of model experiments combining a general circulation model...

متن کامل

Identifying potential synergies and trade-offs for meeting food security and climate change objectives in sub-Saharan Africa.

Potential interactions between food production and climate mitigation are explored for two situations in sub-Saharan Africa, where deforestation and land degradation overlap with hunger and poverty. Three agriculture intensification scenarios for supplying nitrogen to increase crop production (mineral fertilizer, herbaceous legume cover crops--green manures--and agroforestry--legume improved tr...

متن کامل

Soil carbon sequestration to mitigate climate change

The increase in atmospheric concentration of CO2 by 31% since 1750 from fossil fuel combustion and land use change necessitates identification of strategies for mitigating the threat of the attendant global warming. Since the industrial revolution, global emissions of carbon (C) are estimated at 270F 30 Pg (Pg = petagram= 10 g = 1 billion ton) due to fossil fuel combustion and 136F 55 Pg due to...

متن کامل

Potential climate forcing of land use and land cover change

Pressure on land resources is expected to increase as global population continues to climb and the world becomes more affluent, swelling the demand for food. Changing climate may exert additional pressures on natural lands as present-day productive regions may shift, or soil quality may degrade, and the recent rise in demand for biofuels increases competition with edible crops for arable land. ...

متن کامل

مدل‌سازی اثر تغییر اقلیم بر انتشار دی‌اکسیدکربن خاک در مراتع خشک (جنوب ایران)

Introduction: Carbon stored in soils particularly in arid rangelands soils is the most significant carbon sink in terrestrial ecosystems. In arid rangelands, Soils have special places in both carbon sequestration and mitigate global warming. Therefore, any small change in the soil organic carbon (SOC) leads to a significant impact on the CO2 concentration in the atmosphere. Studies have shown t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 38  شماره 

صفحات  -

تاریخ انتشار 2014